UNIT-1

BASIC CONCEPTS OF CHEMISTRY AND CHEMICAL CALCULATIONS

MY REVISION TIMELINE:-

			1
			1
			1

SUMMARY:-

- Matter Anything which occupies space and that has mass.
- Physical classification:
 - Solid
 - Liquid
 - Gas
- Chemical classification:
 - Mixtures
 - Homogeneous (Sugar syrup) •
 - Heterogeneous (Oil and Water) •
 - Pure substances
 - Element (Gold-Au) •
 - Compounds (Glucose-C₆H₁₂O₆)
- > amu or unified atomic mass = $\frac{1}{12}$ th [mass of C-12 atom in its ground state
- ▶ 1 amu / 1 u \approx 1.6605 x 10⁻²⁷ kg.
- $\Rightarrow RAM = \frac{\text{average atomic mass}}{\text{average atomic mass}}$ unified atomic mass
- > One mole:- The amount of substance of a system which contains as many elementary particles as there are in 12g of C-12 isotope.
- ➢ One mole of any substance has 6.022 x 1023 entities.
- $\mathbf{F} \mathbf{RMM} = \frac{\text{mass of the molecule}}{\frac{1}{1000}}$
- unified atomic mass unit
- > Molar mass mass of one mole of substance expressed in g mol⁻¹.
- > Molar volume Volume occupied by one mole of a substance in the gaseous state at given temperature and pressure
- Molar mass (gmol⁻¹) $\Rightarrow \text{ Gram equivalent mass} = \frac{\text{Molar mass } (\text{gmol}^{-1})}{\text{Equivalence factor } (\text{eq mol}^{-1})}$
- Elementary analysis:

Empirical formula	Molecular formula		
Simplest form of expressing	Actual representation of composition of an		
	element		
Simplest ratio	Multiple of empirical formula		
CH ₂ O (Lactic acid)	$C_3H_6O_3$ (Lactic acid)		

- Stoichiometry gives the numerical relationship between chemical quantities in a balanced chemical equation.
- When a reaction is carried out using non stoichiometric quantities of the reactants, the product yield will be determined by the reactant that is completely consumed.
- \triangleright Reagents:

Limiting reagents	Excess reagents
They limit the further reaction from taking	Reagents which are in excess
place	

Redox reactions:

- Oxidation number of an element changes.
- Oxidation number Imaginary charge left on the atom of the compound have been removed in their usual oxidation states.

Oxidation	Reduction	
LEO – Loss of electron	GER – Gain of electron	
Addition of oxygen	Removal of oxygen	
Removal of hydrogen	Addition of hydrogen	

FORMULAS:-

- $\blacktriangleright \quad \text{Relative atomic mass } (A_r) = \frac{average \text{ mass of the atom}}{unified \text{ atomic mass}}$
- Relative molecular mass = n_1 (relative atomic mass of A) + n_2 (relative atomic mass of B)
 - $+ n_3$ (relative atomic mass of C)

 $A_{n1}B_{n2}C_{n3}$ Unit: u

 $Figure Gram equivalent mass = \frac{\text{Molar mass } (\text{gmol}^{-1})}{\text{Equivalence factor } (\text{eq mol}^{-1})}$

Equivalent mass of acids, bases, salts, oxidising agents and reducing agents:

Acids: $E = \frac{Molar \ mass \ of \ the \ acid}{Basicity \ of \ the \ acid}$

Basicity \rightarrow No of moles of ionisable H⁺ ions present in 1 mole of the acid.

> Bases: $E = \frac{Molar \ mass \ of \ the \ base}{Acidity \ of \ the \ base}$

Acidity \rightarrow No of moles of ionisable OH⁻ ions present in 1 mole of the base.

> Oxidising or reducing agents:

Molar mass of the oxidising or reducing agent

 $E = \frac{Molar mass of the oxidising or reducing agent}{No.of moles of electrons gained or lost by one mole of the oxidising or reducing agent}$ \blacktriangleright Relative no. of moles = $\frac{Given \ percent \ of \ the \ atom}{Given \ percent \ of \ the \ atom}$

- Molar mass of the compound Whole number (n) = $\frac{MOLAT MARCO, C}{Calculated empirical formula mass}$
- Given mass \blacktriangleright No. of moles =
- Molar mass Volume at 0°C and at 1 atm
- \blacktriangleright No. of moles = 22.4 litres

HINTS TO SOLVE PROBLEMS:-

 \triangleright

Conditions	Volume occupied by one mole of any substance of any gaseous substances (in litres)		
273 K and 1 bar pressure (STP)	22.71		
273 K and 1 atm pressure	22.4		
298 K and 1 atm pressure (Room	24.5		
temperatute and pressure [SATP])			

- > 1 mole = 6.023×10^{23} entities.
- > 1 amu / 1u ≈ 1.6605×10^{-27} kg
- +1 Chemistry

Element	Molar mass (in g/mol)	Element	Molar mass (in g/mol)
Н	1.0008	Ba	137.4
С	12	Р	31
Ν	14.04	K	39
0	16	Mn	55
Ca	40.1	Cr	51.99
Mg	24.3	Na	23.5
Cl	35.45	Au	197.2
Ag	107.9		

> Molar mass of some frequently used elements:

> To find oxidation number and few important points to remember:

- The oxidation state of a free element (i.e. in its uncombined state) is zero. Example: H₂, Cl₂, Na, K, S₈
- For a monoatomic ion, the oxidation state = net charge on the ion. Example: $Na^+ = +1$, $F^- = -1$, $Cl^- = -1$, $K^+ = +1$, $Be^{+2} = +2$ and $O^{2-} = -2$
- In molecules \rightarrow Sum of all oxidation state = 0
- In charged molecules \rightarrow Sum of all oxidation state = net charge on the ion.
- •

Oxidation number of	In metal hydrides	-1
hydrogen	In other compounds	+1

- Fluorine oxidation state is -1 in all its compounds.
- •

	In peroxides (e.g H ₂ O ₂)	-1
Oxygen	In super oxides (e.g KO ₂)	-1/2
	With fluorine (e.g OF ₂)	+2
A	In most of its compound	-2

- Alkali metals \rightarrow +1 (Li, Na, K, Rb, Cs)
- Alkaline Earth metals \rightarrow +2 (Be, Mg, Ca, Sa, Ba)
- > Tips to find oxidation state of unknown element in a molecule:
 - Denote the unknown oxidation state as x.
 - Write the oxidation numbers.
 - Algebraic sum will be equal to
 - Zero (if it's a neutral molecule)
 - Charge on the compound (if it's not a neutral molecule)
 - Example 1: $CO_2 \Rightarrow x + 2(-2) = 0 \Rightarrow x = +4$
 - Example 2: $Cr_2O_7^{2-} \Rightarrow 2x + 7(-2) = -2 \Rightarrow x = +6$
- > Chemical formula of few important compounds:

Compounds	Chemical formula
Urea	0
	H ₂ N-C-NH ₂
Ethanol	C ₂ H ₅ OH

+1 Chemistry

Potassium permanganate	KMnO ₄
Potassium dichromate	K ₂ Cr ₂ O ₇
Glucose	$C_6H_{12}O_6$
Fructose	$C_{6}H_{12}O_{6}$
Sucrose	$C_{12}H_{22}O_{11}$

TEXTBOOK EVALUATION

Multiple choice questions:-

1. 40 ml of methane is completely burnt using 80 ml of oxygen at room temperature. The volume of gas left after cooling to room temperature is

(a) 40 ml CO₂ gas

(c) 60 ml CO_2 gas and 60 ml H_2O gas

Explanation:

(b) 40 ml CO₂ gas and 80 ml H₂O gas (d) 120 ml CO₂ gas

 $CH_{4(g)} + 2O_{2(g)} CO_{2(g)} + 2 H_2O_{(l)}$

Content	CH ₄	O ₂	CO ₂
Stoichiometric coefficient	1	2	1
Volume of reactants allowed to react	40 mL	80 mL	—
Volume of reactant reacted and product formed	40 mL	80 mL	40 mL
Volume of gas after cooling to the room temperature	$\overline{\mathcal{O}}$	_	-

Since the product was cooled to room temperature, water exists mostly as liquid.

2. An element X has the following isotopic composition ${}^{200}X = 90$ %, ${}^{199}X = 8$ % and ${}^{202}X = 2$ %. The weighted average atomic mass of the element X is closest to

(b) 202 u

- (a) 201 u
- (c) 199 u

(d) 200 u

Explanation:

 $=\frac{(\bar{2}00\times90)+(199\times8)+(202\times2)}{100}=199.96$

= 200 u

- 3. Assertion: Two mole of glucose contains 12.044×10^{23} molecules of glucose. Reason: Total number of entities present in one mole of any substance is equal to 6.02×10^{22}
 - (a) both assertion and reason are true and the reason is the correct explanation of assertion
 - (b) both assertion and reason are true but reason is not the correct explanation of assertion
 - (c) assertion is true but reason is false

(d) both assertion and reason are false

Explanation:

Total number of entities present in one mole of any substance is equal to 6.022×10^{23}

- **4.** Carbon forms two oxides, namely carbon monoxide and carbon dioxide. The equivalent mass of which element remains constant?
 - (a) Carbon
 - (c) Both carbon and oxygen

(b) Oxygen

(d) Neither carbon nor oxygen

Explanation:

 $2 \text{ C} + \text{O}_2 \rightarrow 2 \text{ CO}_2$ 2×12 g carbon combines with 32 g of oxygen. Hence, Equivalent mass of carbon $=2 \times \frac{12}{32} \times 8$ *= 6* 5. The equivalent mass of a trivalent metal element is 9 g eq⁻¹ the molar mass of its anhydrous oxide is (a) 102 g (b) 27 g (c) 270 g (d) 78 g **Explanation:** Let the trivalent metal be M³⁺ Equivalent mass = mass of the metal / valance factor $9g eq^{-1} = mass of the metal / 3 eq$ Mass of the metal = 27 gOxide formed M₂O₃ Mass of the oxide = $(2 \times 27) + (3 \times 16)$ = 102 g6. The number of water molecules in a drop of water weighing 0.018 g is (a) 6.022×10^{26} (b) 6.022×10^{23} (c) 6.022×10^{20} (d) 99×10^{22} **Explanation:** Weight of the water drop = 0.018 g No. of moles of water in the drop = Mass of water / molar mass = $0.018/18 = 10^{-3}$ mole No of water molecules present in I mole of water = 6.022×10^{23} "No. water molecules in one drop of water (10 mole) = $6.022 \times 10^{23} \times 10^{-3}$ $= 6.022 \times 10^{20}$ 7. 1 g of an impure sample of magnesium carbonate (containing no thermally decomposable impurities) on complete thermal decomposition gave 0.44 g of carbon dioxide gas. The percentage of impurity in the sample is (a) 0 % (b) 4.4 % (c) 16 % (d) 8.4 % **Explanation:** $Mg \ CO_3 \rightarrow MgO + CO_2 \uparrow$ Mg CO₃ : $(1 \times 24) + (1 \times 12) + (3 \times 16) = 84$ g $CO_2: (1 \times 12) + (2 \times 16) 44g$ 100% pure 84 g MgCO₃ on heating gives 44 g CO₂ Given that I g of MgCO₃ on heating gives 0.44 g CO₂ Therefore, 84 g MgCO₃ sample on heating gives 36.96 g CO₂ = 100%Percentage of purity of the sample = $\frac{100\%}{44\text{gCO2}} \times 36.96 \text{ g CO}_2 = 84\%$ *Percentage of impurity = 16%* 8. When 6.3 g of sodium bicarbonate is added to 30 g of acetic acid solution, the residual solution is found to weigh 33 g. The number of moles of carbon dioxide released in the reaction is -(a) 3 (b) 0.75 (c) 0.075 (a) 0.3 **Explanation:** The amount of CO_2 released, x = 3.3 g No. of moles of CO_2 released = 3.3 / 44 = 0.075 mol

+1 Chemistry

9. When 22.4 liters of H₂ (g) is mixed with 11.2 liters of Cl₂ (g), each at 273 K at 1 atm the moles of HCl (g), formed is equal to

(a) 2 moles of HCl (g)

(c) 1.5 moles of HCl (g)

(b) 0.5 moles of HCl (g) (d) 1 moles of HCl (g)

Explanation:

 $H_2(g) + Cl_2(g) \rightarrow 2 \text{ HCl } (g)$

Content	$H_2(g)$	cl ₂ (g)	HCl (g)
Stoichiometric coefficient	1	1	2
No. of moles of reactants allowed to react	22.4 L (1	11.2 L (0.5	
at 273 K and 1 atm pressure	mol)	mol)	
No. of moles of reactant reacted and	0.5	0.5	1
product formed			. 1

Amount of HCl formed is 1 mol.

10. Hot concentrated sulfuric acid is a moderately strong oxidizing agent. Which of the following reactions does not show oxidizing behavior?

- (a) $Cu + 2H_2SO_4 \rightarrow CuSO_4 + SO_2 + 2H_2O$
- (b) $C + 2H_2SO_4 \rightarrow 4 CO_2 + 2SO_2 + 2H_2O$
- (c) $BaCl_2 + H_2SO_4 \rightarrow BaSO_4 + 2HCl$

(d) none of the above

Explanation:

 $\overset{+2}{\operatorname{BaCl}}_{2} \overset{-1}{+} \overset{+1}{\operatorname{H}}_{2}^{+6-2} \xrightarrow{+2} \overset{+6-2}{+} \overset{+1-1}{\operatorname{BaSO}}_{4} \overset{+2}{+} \overset{+1-1}{\operatorname{2HCl}}$

- **11.** Choose the disproportional reaction among the following redox reactions.
 - (a) $3Mg(s) + N_2(g) \rightarrow Mg_2N_2(s)$

(b) $P_4(s) + 3NaOH + 3H_2O \rightarrow PH_3(g) + 3NaH_2PO_2$ (aq)

(c) $Cl_2(g) + 2Kl(aq) \rightarrow 2KCl(aq) + I_2$

(d) $Cr_2O_3(s) + 2Al(s) \rightarrow A_2O_3(s) + 2Cr(s)$

Explanation:

$${}^{0}P_{4}(s) + 3NaOH + 3H_{2} \rightarrow PH_{3}(g) + 3NaH_{2}PO_{2}(aq)$$

12. The equivalent mass of potassium permanganate in alkaline medium is $MnO_4 + 2H_2O + 3e^- \rightarrow MnO_2 + 4OH^-$

(a) 31.6 (c) 79

(d) None of these

(b) 52.7

Explanation:

The reduction reaction of the oxidizing agent(MnO_4) involves gain of 3 electrons. Hence the equivalent mass = (Molar mass of $KMnO_4$) / 3 = 158.1 / 3

13. Which one of the following represents 180 g of water?

(a) 5 Moles of water (b) 90 moles of water (c) $\frac{6.022 \times 10^{23}}{180}$ Molecules of water Explanation: (d) 6.022×10^{24} Molecules of water

Explanation:

No. of moles of water present in 180 g = Mass of water / Molar mass of water = $180 \text{ g} / 18 \text{ g mol}^{-1} = 10 \text{ moles}$ One mole of water contains

+1 Chemistry

 $= 6.022 \times 10^{23}$ water molecules 10 mole of water contains = $6.022 \times 10^{23} \times 10$ $= 6.022 \times 10^{24}$ water molecules 14.7.5 g of a gas occupies a volume of 5.6 liters at 0°C and 1 atm pressure. The gas is (a) NO (b) N_2O (c) CO (d) CO₂ **Explanation:** 7.5 g of gas occupies a volume of 5.6 liters at 273 K and 1 atm pressure Therefore, the mass of gas that occupies a volume of 22.4 liters - $\frac{7.5g}{5.6l} \times 22.41 = 30g$ Molar mass of NO (14 + 16) = 30g15. Total number of electrons present in 1.7 g of ammonia is (b) $\frac{6.022 \times 10^{22}}{10^{22}}$ (a) 6.022×10^{23} 1.7 (c) $\frac{6.022 \times 10^{24}}{1.7}$ 6.022×10²³ **Explanation:** No. of electrons present in one ammonia (NH₃) molecule (7 + 3) = 10No. of moles of ammonia = $\frac{Mass}{Molarmass}$ $=\frac{1.7g}{17gmol^{-1}}=0.1$ mol No. of molecules present in One ammonia $= 0.1 \times 6.022 \times 10^{23} = 6.022 \times 10^{22}$ No. of electrons present in 0.1 mol of ammonia $10 \times 6.022 \times 10^{22}$ $= 6.022 \times 10^{23}$ 16. The correct increasing order of the oxidation state of sulphur in the anions $SO_4^{2^2}$, $SO_3^{2^2}$ $S_2O_4^{2-}, S_2O_6^{2-}$ is (b) $SO_4^{2-} < S_2O_4^{2-} < S_2O_6^{2-} < SO_3^{2-}$ (a) $SO_3^{2-} < SO_3^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$ (c) $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-} < SO_4^{2-}$ (d) $S_2O_6^{2-} < S_2O_4^{2-} < SO_4^{2-} < SO_3^{2-}$ 17. The equivalent mass of ferrous oxalate is (a) molar mass of ferrous oxalate molar mass of ferrous oxalate (b) molar mass of ferrous oxalate (d) none of these **18.** If Avogadro number were changed from 6.022×10^{23} to 6.022×10^{20} , this would change (a) the ratio of chemical species to each other in a balanced equation (b) the ratio of elements to each other in a compound (c) the definition of mass in units of grams (d) the mass of one mole of carbon **19.** Two 22.4 liter containers A and B contains 8 g of O₂ and 8 g of SO₂ respectively, at 273 K and 1 atm pressure, then (a) number of molecules in A and B are same (b) number of molecules in B is more than that in A

(c) the ratio between the number of molecules in A to the number of molecules in B is 2:1

(d) number of molecules in B is three times greater than the number of molecules in A

20. What is the mass of precipitate formed when 50 ml of 8.5% solution of Ag NO₃ is mixed with 100 ml of 1.865% potassium chloride solution?

(a) 3.59 g (b) 7 g (c) 14 g (d) 28 g **Explanation:** 50 mL of 8.5% solution contains 4.25 g of AgNO3 No. of moles of AgNO3 present in 50 mL of 8.5% AgNO3 solution = Mass / Molar mass = 4.25 / 170 = 0.025 moles Similarly, No of moles of KCl present in loo mL of 1.865% KCl solution = 1.865 / 74.5 = 0.025 moles So total amount of AgCl formed is 0.025 moles (based on the stoichiometry calculator) Amount of AgCl present in 0.025 moles of AgCl = no. of moles \times molar mass $= 0.025 \times 143.5$ **∠= 3.59 g** 21. The mass of a gas that occupies a volume of 612.5 ml at room temperature and pressure (25°C and 1 atm pressure) is 1.1g. The molar mass of the gas is (a) 66.25 g mol⁻¹ (b) 44 g mol⁻¹ (c) 24.5 g mol⁻¹ (d) 662.5 g mol⁻¹ **Explanation:** No. of moles of a gas that occupies a volume of 6 12.5 ml at room temperature and pressure $(25^{\circ} \text{ C and } 1 \text{ atm pressure})$ $= 612.5 \times 10-3 \text{ L/}24.5 \text{ L mol}^{-1}$ = 0.025 moles We know that, Molar mass = Mass / no. of moles = 1.1 g/0.025 mol22. Which of the following contain same number of carbon atoms as in 6 g of carbon (a) 7.5 g ethane (b) 8 g methane (c) both (a) and (b) (d) none of these **Explanation:** No. of moles of carbon present in 6 g of C - 12 = Mass / Molar mass= 6/12 = 0.5 moles $= 0.5 \times 6.022 \times 10^{23}$ carbon atoms. No. of moles in 8 g of methane = 8 116 = 0.5 moles $= 0.5 \times 6.022 \times 10^{23}$ carbon atoms. No. of moles in 7.5 g of ethane = 7.5 / 16 = 0.25 moles $= 2 \times 0.25 \times 6.022 \times 10^{23}$ carbon atoms. 23. Which of the following compound(s) has/have percentage of carbon same as that in ethylene (C_2H_4) ? (a) propene (b) ethyne (c) benzene (d) ethane **Explanation:** Percentage of carbon in ethylene(C₂H₆) = $\frac{Molar \ mass \ of \ carbon}{Molar \ mass} \times 100$ $=\frac{24}{28} \times 100 = 85.71\%$ Percentage of carbon in propene (C_3H_6) = 2428 × 100 = 85.71% **24.** Which of the following is/are true with respect to carbon -12? (a) relative atomic mass is 12 u (b) oxidation number of carbon is +4 in all its compounds. (c) I mole of carbon -12 contain 6.022×10^{22} carbon atoms. (d) all of these

25. Which one of the following is used as a standard for atomic mass?

(a) ${}_{6}C^{12}$	C	(b) ₇ C ¹²
(c) ${}_{6}C^{13}$		(d) ${}_{6}C^{14}$

Write brief answers to the following questions:-

26. Define relative atomic mass.

- The relative atomic mass is defined as the ratio of average atomic mass factor to the unified atomic mass unit.

27. What do you understand by the term mole.

One mole is defined as the amount of substance of the system which contains as many **elementary particles** (i.e. molecules, atoms, ions, electrons or any other specified particles.) as there are atoms in **12 g of carbon-12 isotope**.

28. Define equivalent mass.

Gram equivalent mass of an element, compound or ion is the mass that **combines** or **displaces 1.008g hydrogen** or **8g oxygen** or **35.5g chlorine**.

29. What do you understand by the term oxidation number.

Oxidation number is defined as the **imaginary charge** left on the atom when all other atoms of the compound have been removed in their usual oxidation states that are assigned according to set of rules.

30. Distinguish between oxidation and reduction.

Oxidation	Reduction	
Addition of oxygen	Addition of hydrogen	
Removal of hydrogen	Removal of oxygen	
Addition of an electronegative element	Addition of an electropositive element	
Removal of an electropositive element	Addition of an electronegative element	
Loss of electron	Gain of electron	
Increase in oxidation state/ number	Decrease in oxidation state/ number	

31. Calculate the molar mass of the following compounds.

 i) Urea [CO(NH2)2] ii) Acetone [CH3COCH3] iii) Boric acid [H3BO3] iv) Sulphuric acid [H2SO4] 				
Solution:				
i) Molar mass	= 1(C) + 2(N) + 4(H) + 1(O)			
	= 1(12) + 2(14) + 4(1) + 1(16)			
	= 12 + 28 + 4 + 16			
ii) Molar mass	= 3(C) + 6(H) + 1(O)			
	= 3(12) + 6(1) + 1(16)			
	= 36 + 6 + 16			
iii) Molar mass	= 3(H) + 1(B) + 3(O)			
111 <i>7</i> 19101a1 111a55	= 3(1) + 1(1) + 3(0) = 3(1) + 1(11) + 3(16)			

= 60

$$= 3 + 11 + 48$$

- iv) Molar mass = 2(H) + 1(S) + 4(O)= 2(1) + 1(32) + 4(16)= 2 + 32 + 64
- 32. The density of carbon dioxide is equal to 1.965 kgm⁻³ at 273 K and 1 atm pressure. Calculate the molar mass of CO₂.

Given:

Density = 1.965kgm⁻³ Molar mass = ? Formula used: Molar mass = density × molar volume Solution: Molar mass = density × molar volume Molar mass = $1.9625 \times 22.4 \times 10^{-2}$

= 98

Molar mass = 44.016g/mol

33. Which contains the greatest number of moles of oxygen atoms

i) 1 mol of ethanol

ii) 1 mol of formic acid iii) 1 mol of formic acid iii) 1 mol of ethanol C_2H_5OH (ethanol) – Molar mass = 24 + 6 + 16 = 4646 g of ethanol contains $1 \times 6.023 \times 10^{23}$ number of oxygen atoms. ii) 1 mol of formic acid. HCOOH (formic acid) – Molar mass = 2+12 + 32 = 4646 g of HCOOH contains $2 \times 6.023 \times 10^{23}$ number of oxygen atoms. iii) 1 mol of H₂O H₂O (water) – Molar mass = 2 + 16 = 1818 g of water contains $1 \times 6.023 \times 10^{23}$ number of oxygen atoms. *:: 1 mole of formic acid contains the greatest number of oxygen atoms.*

34. Calculate the average atomic mass of naturally occurring magnesium using the following data

Isotope	Isotopic atomic mass	Abundance (%)
Mg^{24}	23.99	78.99
Mg ²⁵	24.99	10.00
Mg ²⁶	25.98	11.01

Solution:

Average atomic mass = $\frac{(78.99 \times 23.99) + (10 \times 24.99) + (11.01 \times 25.98)}{100} = \frac{2430.9}{100}$

= 24.31u

- **35.** In a reaction $x + y + z_2 \rightarrow xyz_2$, identify the limiting reagent if any, in the following reaction mixtures.
 - (a) 200 atoms of x + 200 atoms of y + 50 molecules of z_2
 - (b) 1 mol of x + 1 mol of y + 3 mol of z_2
 - (c) 50 atoms of x + 25 atoms of y + 50 molecules of z_2
 - (d) 2.5 mol of x + 5 mol of y + 5 mol of z_2

Question	Number of moles of reactants allowed to react		Number of moles of reactants consumed during reaction			Limiting reagent	
	X Y Z ₂		X	у	Z 2		
(a)	200	200	50	50	50	50	Z2
	atoms	atoms	molecules	atoms	atoms	molecules	
(b)	1 mol	1 mol	3 mol	1 mol	1 mol	1 mol	x and y
(c)	50 atom	25 atom	50	25 atom	25 atom	25	у
			molecules			molecules	
(d)	2.5 mol	5 mol	5 mol	2.5 mol	2.5 mol	2.5 mol	Х

36. Mass of one atom of an element is 6.645×10^{-23} g. How many moles of element are there in 0.320 kg?

Given:

Mass of one atom of an element = 6.645×10^{-23} g = Atomic mass. Mass of given element = 0.320 kg

Formula used:

Number of moles = $\frac{Mass}{Atomic mass}$ Solution: Number of moles = $\frac{Mass}{Atomic mass}$ Number of moles = $\frac{0.320 \times 1000g}{6.645 \times 10^{-23}}$

Number of moles = 4.8156×10^{24} moles

37. What is the difference between molecular mass and molar mass? Calculate the molecular mass and molar mass for carbon monoxide.

Molecular mass	Molar mass
Molecular mass is mass of one molecule	Molar mass is mas of one mole of
(A)	molecule. (6.022×10^{23})
Unit: Atomic mass unit (amu)	Unit: g/mol
Molecular mass of $CO_2 = 1(C) + 2(O) =$	Molar mass of $CO_2 = 44$ g mol ⁻¹
12 + 32 = 44amu	

38. What is the empirical formula of the following?

i) Fructose (C₆H₁₂O₆) found in honey

ii) Caffeine (C₈H₁₀N₄O₂) a substance found in tea and coffee.

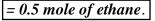
Compound	Molecular formula	Empirical formula
Fructose	$C_{6}H_{12}O_{6}$	CH ₂ O
Caffeine	$C_8H_{10}N_4O_2$	$C_4H_5N_2O$

39. The reaction between aluminium and ferric oxide can generate temperatures up to 3273 K and is used in welding metals. (Atomic mass of AC = 21 u Atomic mass of 0 = 16 u) 2Al + Fe₂O₂ → Al₂O₃ + 2Fe; If, in this process, 324 g of aluminium is allowed to react with 1.12 kg of ferric oxide.

i) Calculate the mass of Al₂O₃ formed.

ii) How much of the excess reagent is left at the end of the reaction? Given:

 $2A1 + Fe_2O_3 \rightarrow Al_2O_3 + 2Fe$ 54g 160g 102g 112g


Solution:

- i) 54g of Al gives 102g of Al₂O₃ So, 324g of Al will give $\frac{102}{54} \times 324$
- ii) 54g of Al requires 160g of Fe₂O₃ for welding reaction So, 324g of Al will require $\frac{160}{54} \times 324 = 960g$ of Fe₂O₃ Therefore, excess Fe₂O₃ – unreacted Fe₂O₃ = 1120 – 960 = 160g **160g of reagent is left at the end of reaction.**

40. How many moles of ethane is required to produce 44 g of CO₂ (g) after combustion. Solution:

 $C_2H_6 + 3\frac{1}{2}O_2 \rightarrow 2CO_2 + 3H_2O$

- 1 mole of ethane on combustion gives 2 moles of CO₂
- \therefore 44g of CO₂ = I mole of CO₂
- 2 moles of CO_2 is produced by 1 mole of ethane.
- \therefore 1 mole of CO₂ will be produced by = ?
- \therefore To produce 1 mole of CO₂, the required mole of ethane is = $\frac{1}{2}$

 $= 612g \ of \ Al_2O_3$

41. Hydrogen peroxide is an oxidising agent. It oxidises ferrous ion to ferric ion and reduced itself to water. Write a balanced equation.

Solution:

42. Calculate the empirical and molecular formula of a compound containing 76.6% carbon, 6.38 % hydrogen and rest oxygen its vapour density is 47. Solution:

Element	Percentage	Atomic mass	Relative no. of atoms	Simple ratio	Whole number
C	76.6%	12	$\frac{76.6}{12} = 6.38$	$\frac{6.38}{1.06} = 6$	6
Н	6.38%	1	$\frac{6.38}{1} = 6.38$	$\frac{6.38}{1.06} = 6$	6
0	17.02%	16	$\frac{17.02}{16} = 1.06$	$\frac{1.06}{1.06} = 1$	1
				Empirical formul	$a = C_6 H_6 O$

$$n = \frac{Molar mass}{Calculated empirical formula mass}$$

$$n = \frac{2 \times vapour density}{94}$$

$$n = \frac{2 \times 47}{94}$$

$$n = 1$$
Molecular formula = 1 × C₆H₆O

 $Molecular formula = C_6 H_6 O$

43. A Compound on analysis gave Na = 14.31% S = 9.97% H= 6.22% and O= 69.5% calculate the molecular formula of the compound, if all the hydrogen in the compound is present in combination with oxygen as water of crystallization. (molecular mass of the compound is 322). Solution:

Element	Percentage	Atomic	Relative no. of	Simple ratio	Whole
Liement	rercentage	Atomic	Relative no. of	Simple ratio	
		mass	atoms		number
Na	14.31%	23	$\frac{14.31}{23} = 0.622$	$\frac{0.622}{0.311} = 6$	6
S	9.97%	32	$\frac{9.97}{32} = 0.311$	$\frac{0.311}{0.311} = 1$	1
Н	6.22%	1	$\frac{6.22}{1} = 6.22$	$\frac{6.22}{0.311} = 20$	20
0	69.5%	16	$\frac{69.5}{16} = 4.34$	$\frac{4.34}{0.311} = 14$	14

All H combines with 10 oxygen atoms to form as 10H₂O.

So the empirical formula is Na₂SO₄ .10H₂ O

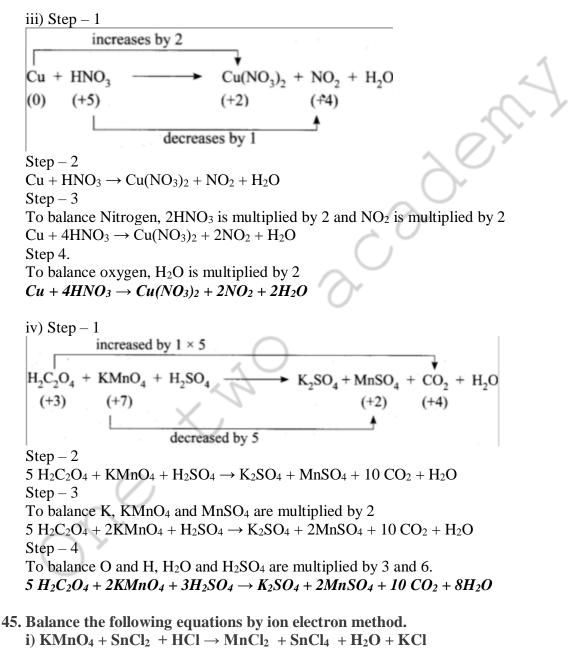
Empirical formula mass = $(23 \times 2) + (32 \times 1) + (16 \times 4) + (10 \times 18) = 46 + 32 + 64 + 180 = 322$

 $n = \frac{Molecular\ mass}{Empirical\ formula\ mass} = \frac{322}{322} = 1$

 $Molecular formula = Na_2SO_4. 10H_2O$

44. Balance the following equations by oxidation number method

- $i) \ K_2 Cr_2 \ O_7 + KI + H_2 SO_2 \rightarrow K_2 SO_4 + Cr_2 (SO_4)_3 + I_2 + H_2 O$
- ii) $KMnO_4 + Na_2SO_3 \rightarrow MnO_2 + Na_2SO_4 + KOH$
- iii) Cu+ HNO₃ \rightarrow Cu(NO₃)₂ + NO₂ + H₂O
- $iv) H_2C_2O_4 + KMnO_4 + H_2SO_4 \rightarrow K_2SO_4 + MnSO_4 + CO_2 + H_2O$


i) Step - 1.

$$[decreases by 3]$$

$$K_2Cr_2O_7 + KI + H_2SO_4 \rightarrow K_2SO_4 + Cr_2(SO_4)_3 + I_2 + H_2O_4 \rightarrow (+6) \quad (-1) \quad (+3) \quad (0) \quad (+3) \quad (-3) \quad (+3) \quad (+$$

+1 Chemistry

Step – 2 $2KMnO_4 + 3Na_2SO_3 \rightarrow 2MnO_2 + 3Na_2SO_4 + KOH$ Step – 3 balancing potassium, KOH is multiplied by 2 $2KMnO_4 + 3Na_2SO_3 \rightarrow 2MnO_2 + 3Na_2SO_4 + KOH$ Step – 4 To balance H atom, H₂0 is added on reactant side. $2KMnO_4 + 3Na_2SO_3 + H_2O \rightarrow 2MnO_2 + 3Na_2SO_4 + KOH$

ii) $C_2O_4^{2-} + Cr_2 O_7 _{2-} \rightarrow Cr^{3+} + CO_2$ (in acid medium)

iii) $Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 + NaI$

iv) $Zn + NO_3^- \rightarrow Zn^{2+} + NO$ (in acid medium)

i) Oxidation half reaction: (loss of electrons)
+2 +4
SnCl₂
$$\rightarrow$$
 SnCl₄ + 2e⁻ \rightarrow 1
Reduction half reaction: (gain of electrons)
+7 +2
KMnO₄ + 5e⁻ \rightarrow MnCl₂ \rightarrow 2
Add H₂O to balance oxygen atoms.
+2
KMnO₄ + 5e⁻ \rightarrow MnCl₂ + 4H₂O \rightarrow 3
Add HCl to balance hydrogen atoms
KMnO₄ + 5e⁻ \rightarrow MnCl₂ + 4H₂O \rightarrow 4
To equalize the number of electrons equation (1) x 5 and equation (2) x 2
SSnCl₂ \rightarrow SSnCl₄ + 10e⁻
2KMnO₄ + 16HCl + 10e⁻ \rightarrow 2MnCl₂ + 4H₂O \rightarrow 2KCl
2KMnO₄ + 16HCl + 10e⁻ \rightarrow 2MnCl₂ + 4H₂O + 2KCl
2KMnO₄ + 5SnCl₂ + 16HCl \rightarrow SSnCl₄ + 2MnCl₂ + 4H₂O + 2KCl
10) Oxidation half reaction:
Cr₂O₄⁻² \rightarrow 2CO₂ + 2e⁻ \rightarrow 1
(+3) (+4)
Reduction half reaction:
Cr₂O₄⁻² + 6e⁻ \rightarrow 2Cr³⁺ \rightarrow 2
(+6)
To balance oxygen atoms, H₂O is added on RHS of equation (2)
Cr₂O₇⁻² + 6e⁻ \rightarrow 2Cr³⁺ \rightarrow 7
To equalize the number of electrons gained and lost, multiply the equation (4) x 3.
(4) \Rightarrow 3C₂O₄⁻² + 14H⁺ \rightarrow 6CO₂ + 6e⁻
 $\frac{Cr_2O_7^{-2} + 6e^- \rightarrow 2Cr^{3+} + 7H_2O}{Cr_2O_7^{-2} + 3C_2O_4^{-2} + 14H^+ \rightarrow 2Cr^{3+} + 6CO_2 + 7H_2O}$
iii) Oxidation half reaction: (Loss of electron)
Na₃S₃O₃ \rightarrow Na₃S₄O₆ + 2e⁻ \rightarrow 1
Reduction half reaction: (Gain of electron)
Na₃S₃O₃ \rightarrow Na₃S₄O₆ + 2e⁻ \rightarrow 1
Reduction half reaction: (Gain of electron)
Na₃S₃O₃ \rightarrow Na₃S₄O₆ + 2e⁻ \rightarrow 1
Reduction half reaction: (Gain of electron)
Na₃S₅O₃ \rightarrow Na₃S₄O₆ + 2e⁻ \rightarrow 1
Reduction half reaction: (Gain of electron)
Na₃S₅O₃ \rightarrow Na₃S₄O₆ + 2e⁻ \rightarrow 1
Reduction half reaction: (Gain of electron)
Na₃S₅O₃ \rightarrow Na₃S₄O₆ + 2e⁻ \rightarrow 1
Reduction half reaction: (Gain of electron)
Na₃S₅O₃ \rightarrow Na₃S₄O₆ \rightarrow 2e⁻ \rightarrow 1
Reduction half reaction: (Gain of electron)
Na₃S₅O₃ \rightarrow Na₃S₄O₆ $+$ 2e⁻ \rightarrow 1
Reduction half reaction: (Gain of electron)
Na₃S₅O₃ \rightarrow Na₃S₄O₆ $+$ 2e⁻
 $I_{2} = 2NaII$
 $I_{2} = 2NaII$
 $I_{2} = 2NaII$
 $I_{2} = 2NaII$
 $I_{2} =$

 $2Na_2S_2O_3 + I_2 \rightarrow Na_2S_2O_2 + 2NaI$

iv) Half reactions are:

$$\begin{array}{c} \overset{\circ}{Zn} \rightarrow Zn^{2+} \\ \overset{+5}{NO_{3}} \rightarrow \overset{+2}{NO} \\ (1) \Rightarrow Zn \rightarrow Zn^{2+} + 2e^{-} \\ (2) \Rightarrow NO_{3}^{-} + 4H^{+} \rightarrow NO + 2H_{2}O \\ (3) \times 3 \Rightarrow 3Zn \rightarrow 3Zn^{2+} + 6e^{-} \\ (4) \times 2 \Rightarrow 2NO_{3}^{-} + 6e^{-} + 8H^{+} \rightarrow 2NO + 4H_{2}O \\ \hline 3Zn + 2NO_{3}^{-} + 8H^{+} \rightarrow 3Zn^{2+} + 2NO + 4H_{2}O \end{array}$$