ONE TWO ACADEMY

Unit Test - 07

TOTAL:- 45

GENERAL MATHEMATICS

STD XII

Application of Derivatives

Choose the correct answer:-

 $5 \times 1 = 5$

1. The number given by Rolle's theorem for the function x^3 - $3x^2$, $x \in [0,3]$ is

- (a) 1 (b) $\sqrt{2}$ (c) $\frac{3}{2}$ (d) 2
- 2. Angle between $y^2 = x$ and $x^2 = y$ at the origin is
- (a) $\tan^{-1}\frac{3}{4}$ (b) $\tan^{-1}\frac{4}{3}$ (c) $\frac{\pi}{2}$
- 3) The point of inflection of the curve $y = (x-1)^3$ is
- (a) (0,0) (b) (0,1) (c) (1,0) (d) (1,1)
- 4)If the normal makes an angle θ with a positive x-axis then the slope of the curve at the point where the normal is drawn is
- (a) $-\cot\theta$ (b) $\tan\theta$ (c) $-\tan\theta$ (d) $\cot\theta$
- 5) Which of the following curves in concave down?

(a)
$$y = -x^2$$
 (b) $y = x^2$ (c) $y = e^x$ (d) $y = x^2 + 2x - 3$

Answer any 5 of the following (Question no 8 is compulsory):- $5 \times 2 = 10$

6) The temperature T in celsius in a long rod of length 10 m, insulated at both ends, is a function of length x given by T = x(10-x). Prove that the rate of change of temperature at the midpoint of the rod is zero.

7) Find the points on the curve $y^2 - 4xy = x^2 + 5$ for which the tangent is horizontal.

- 8) Find the asymptotes of the function $f(x) = \frac{1}{x}$.
- 9) Write the Maclaurin series expansion of the following functions: $f(x) = e^x$.

10)
$$\lim_{x\to 0} \frac{1-\cos x}{x^2}$$
.

11)A thermometer was taken from a freezer and placed in boiling water. It took 22 seconds for the thermometer to raise from -10° C to 100° C. Show that the rate of change of temperature at some time t is 5° C per second.

12)A particle moves along a straight line in such a way that after t seconds its distance from the origin is $s = 2t^2 + 3t$ meters

One Two academy

- (i) Find the average velocity between t = 3 and t = 6 seconds.
- (ii) Find the instantaneous velocities at t = 3 and t = 6 seconds.
- 13)If the volume of a cube of side length x is $v = x^3$. Find the rate of change of the volume with respect to x when x = 5 units.

Answer any 5 of the following (Question no 21 is compulsory):-

 $7 \times 3 = 21$

- 14) Show that $x^2 y^2 = a^2$ and $xy = c^2$ cuts orthogonally.
- 15)A particle moves along a line according to the law , where $t \ge 0$. Find the total distance travelled by the particle in the first 4 seconds.
- 16)A beacon makes one revolution every 10 seconds. It is located on a ship which is anchored 5km from the straight shoreline. How fast is the beam moving along the shoreline when it makes an angle of 45° with the shore?
- 17) Using the mean value theorem prove that for, a > 0 and b > 0 $|e^{-a} e^{-b}| < |a-b|$
- 18) Prove that $\lim_{x \to 0+} x^x = 1$.
- 19) Find the absolute extrema of the following function on the given closed interval.

$$f(x) = x^2 - 12x + 10$$
; [1,2]

- 20) Find the two positive numbers whose product is 20 and their sum is minimum
- 21) Write down the Taylor series expansion, of the function $\log x$ about x = 1 up to three non-zero terms for x > 0.

Answer the following:-

 $3 \times 5 = 15$

22) Find the angle between $y = x^2$ and $y = (x-3)^2$.

[OR]

A ladder 17 meters long is leaning against the wall. The base of the ladder is pulled away from the wall at a rate of 5m/s. When the base of the ladder is 8 meters from the wall,

- a) How fast is the top of the ladder moving down the wall?
- b)At what rate, the area of the triangle formed by the ladder, wall and floor, is changing?
- 23) A farmer wants to fence a rectangular pasture adjacent to a river. The pasture must contain
- 1,80,000 sq mtrs in order to provide enough grass for herds. No fencing is needed along the river.

What is the length of the minimum needed fencing material?

[OR]

A hollow cone with base radius a cm and height b cm is placed on a table. Show that the volume of the largest cylinder that can be hidden underneath is $\frac{4}{9}$ times the volume of the cone.

24) Sketch the curve $y = f(x) = x^2 - x - 6$.

[OR]

Expand tan x in ascending powers of x upto 5th power for $\frac{-\pi}{2} < x < \frac{\pi}{2}$.

All the best

