ONE TWO ACADEMY

Unit Test - 04

TOTAL:- 45

GENERAL MATHEMATICS

STD XII

Inverse Trigonometric functions

Choose the correct answer:-

 $5 \times 1 = 5$

1) The principal value of $\sin^{-1}\sin\frac{2\pi}{3}$.

 $(1) \frac{-2\pi}{3}$.

 $(2)\frac{2\pi}{3}$

- $(3)\frac{\pi}{3}$

2) Find the odd one out:-[based on periodicity]

 $(1) \sin x$

(2) eix

- (3) tan x
- (4)sec x

3) Identify the incorrect statement regarding tangent function:-

- (1) The graph is not continuous.
- (2) It has neither maximum nor minimum.
- (3) It has infinitely many horizontal asymptotes.
- (4) It has discontinuity points at $x = n\pi + \frac{\pi}{2}$, nEZ
- 4) The principal value of $cosec^{-1}$ (-1) is (1) π
- $(2)\frac{\pi}{2}$ $(3) \pi/2$

(4) 0.

5) Calculate the period of the following function $y = \sin(\frac{1}{4}x) + \cos(\frac{1}{2}x)$

 $(1) 4\pi$

 $(2) \pi$

Answer any five of the following (Question no 13 is compulsory):-

 $5 \times 2 = 10$

- 6) Why the term amplitude can't be defined for tan x?
- 7) Why do we define inverse trigonometric functions in their restricted domain?
- 8) For what value of x does $\sin^{-1}x = \sin x$?
- 9) Find the domain of $g(x) = \sin^{-1}x + \cos^{-1}x$.
- 10) Find the value of $\tan^{-1}\tan\left(\frac{5\pi}{4}\right)$.
- 11)Calculate the domain of the secant function.
- 12) What is a bijection?

One Two academy

13) Distinguish between $\sin x = \frac{1}{2}$ and $x = \sin^{-1}(\frac{1}{2})$.

Answer any five of the following(Question no 20 is compulsory):-

 $5 \times 3 = 15$

- 14) Sketch the graph of $y = \sin(\frac{x}{3})$ for $0 \le x \le 6\pi$.
- 15) Find the value of $\sin^{-1}\left[\sin\frac{5\pi}{9}\cos\frac{\pi}{9} + \cos\frac{5\pi}{9}\sin\frac{\pi}{9}\right]$.
- 16) State the reason for $\cos^{-1}[\cos(-\frac{\pi}{6})] = /= -\frac{\pi}{6}$.
- 17) For what value of x, the inequality $\frac{\pi}{2} < cos^{-1}(3x 1) < \pi$ holds?
- 18) Find the domain of tan-1 ($\sqrt{(9-x^2)}$).
- 19) If $\cot^{-1}(\frac{1}{7}) = \theta$, find the value of $\cos\theta$.
- 20) Prove that $\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}$.

Answer the following:-

 $3 \times 5 = 15$

1) Find the domain of $\sin^{-1}(2 - 3x^2)$.

[OR]

Prove that $\tan^{-1}x + \tan^{-1}y + \tan^{-1}z = \tan^{-1}\left(\frac{x + y + z - xyz}{1 - xy - yz - zx}\right)$.

2) Find the number of solutions of the equation $tan^{-1}(x-1) + tan^{-1}x + tan^{-1}(x+1) = tan^{-1}(3x)$.

[OR]

Find the value of $\cot^{-1}(1) + \sin^{-1}(\frac{-\sqrt{3}}{2}) - \sec^{-1}(-\sqrt{2})$.

3)Draw the graph of $y = \sin x$ in $\left[\frac{\pi}{2}, \frac{\pi}{2}\right]$ and hence draw the graph of $y = \sin^{-1}x$ and enlist the properties (any 2) with it.

[OR]

Draw the graph of the cosecant function and mention its domain and range.